WJEC Physics GCSE Topic 2.4: Further motion concepts Mark Schemes for Questions by topic

Sub-section	Mark	Answer	Accept	Neutral answer	Do not accept
(i)	2	momentum = 50 000 × -2 (1-subs) = -100 000 [kg m/s] (1 -ans)	100 000 to the left gets 2 marks. NB1:50 000 × 2 = 100 000 gets 1 mark. NB2: 50 000 × -2 = 100 000 gets 1 mark NB3: 50 000 × 2 = -100 000 gets 1 mark NB4: 50 000 × 2 = 100 000 to the left gets 1 mark		50 000 + -2 = ±100 000
(ii)	1	The negative of answer in (i) i.e. 100 000 [kg m/s] ecf			
(iii)	2	Answer from part (ii) ÷ 80 000 (1-subs) = 1.25 [m/s] or correct answer for their substitution (1)	If no answer in part (ii) and answer from part (i) used to get a correct answer award 1 mark only		
Total	5				

Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
(a)		1	[When two or more objects interact the total] momentum remains constant providing no external forces act	Momentum before = momentum after provided no external forces act		
(b)	(i)	3	Initial momentum = 0.01ν OR 10ν (1) Final momentum = $0.4 \times 10 = 4$ OR 4000 (1) Therefore $\nu = \frac{4}{0.01}$ or $\frac{4000}{10} = 400$ [m/s] (1)			
	(ii)	3	Initial KE = $0.5 \times 0.01 \times 400^2$ ecf = 800 [J] (1) Final KE = $0.5 \times 0.4 \times 10^2$ = 20 [J] (1) Subtraction of their 2 values i.e. 780 [J] (1) don't award 3 rd mark if negative answer	For final KE = 19.5 [J] based on 0.39 kg for the final momentum in (b)(i) award 2 nd mark		
TC	DTAL	7	don't award 3 rd mark if negative answer	award 2 mark		

3.

Sub-	-section	Mark	Answer	Accept	Neutral answer	Do not accept
(a)		2	Equal[s] (1) Force[s] (1)	Must be Is [the same as] Stays the same as		
(b)	(i)	3	Initial momentum = 1 000 × 5 or 5 000 (1) 800 × 2 or 1 600 (1) Correct addition of 2 momenta (ecf) i.e. 6 600 [kg m/s] (1)			1000 × 5 not equal to 5 000 800 × 2 not equal to 1600
	(ii)	1	Momentum of van = 3 400 [kg m/s]			
	(iii)	1	Mom of car = $6600 \text{ (ecf)} - 3400 \text{ (ecf)} = 3200 \text{ [kg m/s]}$			
	(iv)	1	$\frac{3200\text{ecf}}{800} = 4 \text{ [m/s]}$			
(c)		1	16 000 [N] on the van or to the left	Same size force on the van -16 000 [N] 16 000 [N] backwards / back / in the opposite direction		
TO	OTAL	9				

Question			Marking details	Mark
5.	(a)	(i)	$0.15 \times 20 \text{ (1 for substitution)} = 3 \text{ [kg m/s] (1)}$	2
		(ii)	$\frac{3}{0.5}$ (1) allow ecf from (i) = 6 [N] (1)	2
		(iii)	3 [N] allow ecf from (i) which gives the same answer as in (i) or allow ecf from (ii) which gives half the answer to (ii)	1
	(b)	(i) (ii)	e.g. car crash / emergency stop / sudden braking / landing on ground Stretchy seat belt / air bag / crumple zone to achieve it/ bending legs on landing Mark parts (i) and (ii) together.	2
			Question total	[7]

5.

Sub-section	Mark	Answer	Accept	Neutral answer	Do not accept
(a)	2	Substitution into $x = ut + \frac{1}{2}at^2$ i.e. $x = [0 +] (\frac{1}{2} \times 10 \times 2.8^2)$ (1) Answer = 39.2 [m] (1)	Combinations of equations of motion – find the mean speed (14 m/s) (1) and use of distance = speed × time = 39.2 [m] (1)		2.8 × 28 = 78.4 [m]
(b)	3	Substitution into $v = u + at$ i.e. $v = [0] + 10 \times 2.8 (1)$ v = 28 [m/s] (1) Momentum = $mv = 0.3 \times 28 \text{ (ecf)}$ = 8.4 [kg m/s] (1)	Use of energy argument to get value for v i.e. PE = 117.6 J (ecf) (1) use KE to find $v = 28$ [m/s] (1) Substitution into $v^2 = u^2 + 2ax$ ecf on x (1) $v = 28$ [m/s] (1)		
(c) (i)	2	Substitution into KE = $\frac{1}{2} mv^2$ i.e. KE = $\frac{1}{2} \times 0.3 \times 14^2$ (1) Answer = 29.4 [J] (1)			KE = ½ × 0.3 × 14
(ii)	2	Momentum after bounce = [-] 4.2 (1) Change in momentum = - 4.2 - 8.4 ecf = [-]12.6 [kg m/s] (1)	Change in momentum = 8.4 ecf + answer for momentum after bounce – award 2 marks		
(iii)	2	Change in momentum of the ball (1) is equal [and opposite] to the change in momentum of the Earth (1) The 2 nd mark can only be awarded if it is linked to the 1 st mark.			Statement of principle of conservation of momentum
(d)	2	Force on Earth / ground from the ball (1) equal and opposite force on ball from Earth / ground (1)	Force on Earth from the ball = force on ball from Earth (1)		Statement of N3rd Law
Total	13				

Sub-section	Mark	Answer	Accept	Neutral answer	Do not accept
(a)	3	Use of $v = u + at$ (1) by implication = 0 + (12 × 10) (1) = 120 [m/s] (1)	$65 + (12 \times 10) = 185$ award 2 marks $65 + (12 \times 10) = 100$ award 1 mark Statement that $u = 0$ only award 1 mark		
(b)	3	Use of $x = \frac{1}{2}(u+v) \times t$ (1) by implication = $\frac{1}{2}$ (0 + 120 [ecf]) × 12 (1) 60 × 12 = 720 [m] (1)	If u identified as 65 in (a) then apply ecf in (b) for: $\frac{1}{2}$ (65 + 185) × 12 = 1 500 [m] award 3 marks The following may be seen by candidates taught HT Use of $x = ut + \frac{1}{2}at^2$ = 0 + (5 × 144) = 720 [m] Use of $v^2 = u^2 + 2ax$ 120 ² = 0 + 2 × 10 × x = 720 [m]		
(c)	2	Dist = 65 × 12 (1) = 780 [m] (1)			
TOTAL	8				

7.

Question		1	Marking details	Marks
3.	(a)	(i)	15 [m/s] (1)	1
		(ii)	900 [kg m/s] (1) ecf	1
		(iii)	$\frac{900(\text{ecf})}{6}$ = 150 (1) N or kg m/s ² or Newtons (1)	2
	(b)		The same change in momentum happens in a shorter time / change in momentum per second is greater / increased deceleration (1) so force increases / is greater (1) The 2 nd mark must be linked to the 1 st mark.	2
	(c)		Any 2 × (1) from: Air bag, crumple zone, head rest, passenger cage, ABS (anti-locking) brakes, <u>laminated</u> windscreen, collapsible steering-wheel / side impact bars / child safety seat Do not accept flexible bumper / crumble zone / crash zone / head support	2
			Question total	[8]

(a) product of the force and the perpendicular distance (1) reference to a point/pivot (1) 2 since W is at a greater distance from A (1) (b) then W must be less than P if moments are to be equal (1) (ii) P must increase (1) since moment of girl's weight increases as she moves from A to B (1) correct statement about how P changes (e.g. P minimum at A, maximum at B, or P increases in a linear fashion) (1) max 4 [6] 9. (sum of) clockwise moments (about a point) = (sum of) anticlockwise moments (1) (for a system) in equilibrium (1) accept balanced not stationary 2 (b) $(780 \times 0.35 =) 270 \text{ (Nm) (1) } (273)$ Nm (1) or newton metre(s) accept Newton metre(s) (not J, nm or nM, Nms, etc) 2 (c) (b) + (1100×0.60) (1) (=) $F_{\Delta} \times 1.3$ (1) ($F_{\Delta} = 660 + 273/1.3$ gets both marks) (= 933/1.3) = 720 (N) (1) (717.7 or 715 for use of 930) ecf (b) 2 sf only (1) independent mark 4 (d) (780 + 1100 - (c)) = 1200 (1) (1162 N)

1

ecf (c)